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Thermal generation of droplet soliton in chiral magnet
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Controlled creation of localized magnetic textures beyond conventional π -skyrmions is an important problem
in the field of magnetism. Here, by means of spin dynamics simulations, Monte Carlo simulations, and harmonic
transition state theory we demonstrate that an elementary chiral magnetic soliton with zero topological charge—
the chiral droplet—can be created by thermal fluctuations in the presence of the tilted magnetic field. The
proposed protocol relies on an unusual kinetics combining the effects of the entropic stabilization and low-energy
barrier for the nucleation of a topologically trivial state. Following this protocol by varying temperature and the
tilt of the external magnetic field, one can selectively generate chiral droplets or π -skyrmions in a single system.
The coexistence of two distinct magnetic solitons establishes a basis for a rich magnetization dynamics and opens
up the possibility for the construction of more complex magnetic textures such as skyrmion bags and skyrmions
with chiral kinks.
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I. INTRODUCTION

The model of chiral magnets allows surprisingly many
spatially localized statically stable solutions. Together with
the originally reported solutions, also known as kπ -skyrmions
(Sks) [1], a large variety of nonaxially symmetric solitons
with an arbitrary topological index were recently discovered
in the two-dimensional (2D) model of a chiral magnet. The
latter include skyrmion bags [2,3] and Sks with chiral kinks
(CKs) [4–7]. Recently, the direct observation of skyrmion
bags by means of Lorentz transmission electron microscopy
and their current-induced motion were reported in Ref. [8].
The experimental evidence for CKs was provided in Ref. [9].
The coexistence of various types of solitons in a single system
is fundamentally interesting and technologically appealing.
However, since the localized states beyond conventional Sks
are typically metastable states, their controllable nucleation is
challenging.

Here we suggest a protocol for generating an elementary
magnetic soliton containing a single CK—the chiral droplet
(CD), also referred to as a chimera skyrmion [10]—by means
of thermal fluctuations and oblique magnetic field. Figure 1
shows the magnetic vector fields for a π -skyrmion [Fig. 1(a)]
and the CD [Fig. 1(c)]. The invariant which defines the topo-
logical charge is

Q = 1

4π

∫
n · (∂xn × ∂yn)dxdy. (1)

*v.kuchkin@fz-juelich.de

For a π -skyrmion, Q = −1, and for a CD, Q = 0. We refer
to the CD as an elementary chiral soliton because it is the
most compact nonaxially symmetric soliton containing only
one CK. The CD texture was previously reported as a stat-
ically stable solution [5,10] and a transient state during the
asymmetric Sk collapse [11–13]. In contrast to kπ -skyrmions,
the interparticle interaction potentials for a CD with other
solitons are strongly asymmetric due to the presence of the
CK [4]. As a consequence, CDs may attract or repel other
solitons depending on their mutual orientation. This provides
a basis for skyrmion fusion and, thereby, the creation of more
complex magnetic textures.

Although CDs represent excitations in the ferromagnetic
(FM) background, their large entropy enables entropic sta-
bilization, similar to what was reported for conventional
π -skyrmions [14–16]. On the other hand, CDs belong to a
class of topologically trivial solitons [5]. Because of that
one may expect lower energy barriers for their nucleation
compared to that for topologically nontrivial textures. As a
result, there are prerequisites for effective thermal generation
of CDs. Indeed, we found that under a tilted magnetic field
and moderate thermal fluctuations, the spontaneous nucle-
ation of CDs dominates the π -Sk nucleation by several orders
of magnitude. It is noteworthy that by varying the temperature
and the tilt angle of the external field one can selectively
nucleate either π -Sks or CDs. These findings are supported by
the consistence of stochastic Landau-Lifshitz-Gilbert (LLG)
simulations, Monte Carlo simulations, and analysis based on
the transition state theory.
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FIG. 1. (a) and (b) show the π -skyrmion stabilized with Bloch
and Neel types of DMI, respectively. (c) and (d) show the chiral
droplets stabilized with Bloch and Neel types of DMI, respectively.
The CD is calculated at h = 0.65 and u = 0. The magnetic textures
in (b) and (d) can be obtained from the textures in (a) and (c) by
rotating all spins by 90◦ counterclockwise about the z axis. (e) and
(f) illustrate the standard color code used for visualization of the
magnetization vector field. (e) shows vectors lying in the xy-plane
(nz = 0), and (f) shows vectors in the xz-plane (ny = 0).

II. MODEL

We consider a classical spin Hamiltonian on a square lat-
tice:

E =−J
∑
〈i, j〉

ni · n j −
∑
〈i, j〉

Di j · [ni×n j] − μsB
∑

i

ni, (2)

were ni is the normalized magnetization vector at lattice site
i; J and D = Dr̂i j are the Heisenberg exchange constant and
Dzyaloshinskii-Moriya vector, respectively; r̂i j is the unit
vector between sites i and j; μs is the magnitude of the
magnetic moment at each site; and B is the external mag-
netic field. The symbol 〈i, j〉 denotes summation over unique
nearest-neighbor pairs. The ratio between J and D defines the
equilibrium period of helical spin spirals, LD = 2πJa/D, with
a being the lattice constant, and characteristic magnetic field,
BD = D2/(Jμs).

All simulations were performed for the Dzyaloshinskii-
Moriya interaction (DMI) of the Bloch type, which is
commonly attributed to the bulk crystals of chiral magnets.

However, the particular choice of DMI does not affect the
main results and modifies only the chirality of magnetic tex-
tures. A comparison of magnetic textures for a CD in the
cases of Bloch and Neel types of DMI is shown in Figs. 1(c)
and 1(d), respectively.

We consider the case where magnetic field is tilted with
respect to the plane normal, h = B/BD = h(sin ϑ cos ϕ, sin ϑ

sin ϕ, cos ϑ ), and parametrized by the polar angle ϑ and az-
imuthal angle ϕ. For parameters J and D in our simulations
and providing a relatively large LD = 64a, the Hamiltonian (2)
becomes nearly isotropic in the xy-plane. In this case, the
choice of angle ϕ does not affect the results, but for definite-
ness we fix ϕ = −π/4.

We simulate spin dynamics at finite temperature using the
stochastic LLG equation:

∂ni

∂t
= −ni × (

Bi
eff + Bi

fluc

) + αni × ∂ni

∂t
, (3)

where t is a dimensionless time scaled by Jγμ−1
s , with γ

being the gyromagnetic ratio; α is the Gilbert damping pa-
rameter; Bi

eff = − 1
J

∂E
∂ni

is a dimensionless effective field; and
Bi

fluc is the fluctuating field representing uncorrelated Gaus-
sian white noise with the correlation coefficient proportional
to temperature T . For the numerical integration of Eq. (3), we
use the semi-implicit method provided in Ref. [17] assuming
α = 0.3 and time step �t = 0.01. For the chosen coupling
parameters we estimate the critical temperature, Tc � 0.7J/kB

(see Ref. [18]). For the results presented below, the tempera-
ture is always T < Tc and given in units of J/kB.

III. RESULTS

A. Stochastic LLG simulations

The top row of images in Fig. 2 provides representative
snapshots of the LLG simulations showing the system at
various temperatures and different tilt angles of the external
magnetic field, ϑ = 0 in Fig. 2(a) and ϑ = 0.4 in Fig. 2(b).
To make the presence of the localized magnetic textures in
the system more evident, in the bottom row of images we
provide corresponding snapshots of the system after cooling
by setting T = 0 in (3). In the case of perpendicular mag-
netic field, ϑ = 0, we observe spontaneous nucleation of only
π -Sks, while at tilted magnetic field, ϑ = 0.4, we observe
the nucleation of CDs. Noticeably, the temperature required
for the nucleation of CD is significantly lower than that for
the π -Sk nucleation [compare the snapshots in Figs. 2(a)
and 2(b) at T =0.18 J/kB]. Thus, applying the tilted field and
varying the temperature, one can selectively nucleate either
CDs or π -Sks. At high temperature, however, in both cases,
we observe the emergence of π -Sks, which in an appropriate
field range tend to form a regular lattice. For the tilted field
and intermediate temperatures, on the other hand, the isolated
solitons exhibit an additional degree of freedom. As seen in
Fig. 2(b) for T = 0.3, they tend to elongate and can transform
into the spiral state. In contrast, a close-packed π -Sk lattice
remains stable up to a critical tilt angle, ϑc ≈ 50◦ [19].

The CD orientation in 2D space can be defined by the
in-plane component of the net magnetization of the CD, m =∑

i(ni − n0), where n0 is the magnetization far from the soli-
ton n0 = n(r), for r → ∞. In the presence of a tilted magnetic
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FIG. 2. (a) illustrates the case of perpendicular magnetic field, h = 0.643, ϑ = 0 and (b) corresponds to the tilted magnetic field, h = 0.645,
ϑ = 0.4. The simulations were performed on a square domain, Lx =Ly =8LD, with periodic boundary conditions in the xy-plane, and n(r)||Bext

in the initial state. The top row of images represents the snapshots of the system at different temperatures taken at thermal equilibrium after
∼106 LLG iterations. Each image in the bottom row corresponds to the top image after setting T = 0 and energy relaxation. The color code is
identical to that shown in Fig. 1(e) and 1(f).

field, vector m of the CD is always parallel to the in-plane
projection of the external field, h.

Figure 3 illustrates the details of the CD nucleation pro-
cess, as obtained from the LLG simulations. The black curve
in Fig. 3(a) shows an averaged out-of-plane component of
magnetization, N = ∑

i ni,z/N , where i runs over all N spins.
With time, N converges to its equilibrium value, which for
the chosen parameters equals 0.74. The Monte Carlo (MC)
simulations [18] are fully consistent with the results of LLG
simulations and show a similar behavior of N in reaching
thermal equilibrium.

π -Sks are characterized by topological charge Q = −1;
hence, the event of their nucleation can be identified by cal-

culating Q. In contrast, the CDs have zero topological charge,
which makes this approach inapplicable. To identify the pres-
ence of CDs in the system we employ an alternative method
based on time tracing of the net magnetization, as described
in the following. We split the whole simulated domain into
overlapping subdomains 	 j of fixed size LD × LD containing
N ′ = L2

D/a2 spins. Taking into account these periodic bound-
ary conditions, the total number of such subdomains equals
the number of spins in the system N . At each time step, we
calculate the averaged out-of-plane magnetization for each
subdomain, N j = ∑

i ni,z/N ′, i ∈ 	 j . Then, we identify the
subdomain 	m with minimal N j , denoted Nm. The red curve
in Fig. 3(a) shows the representative dependency of Nm on
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FIG. 3. (a) shows the evolution of the average magnetization N (black) and its maximal value Nm (red) at temperature T = 0.18, as
obtained in the LLG simulations. The dashed blue line corresponds to the threshold value of 0.3 for Nm. The position of subdomain 	m

corresponding to Nm is given in (b); the colors encode the time [see the color bar in (a)]. Blue dots in (a) mark instants of time for which
magnetic textures are shown in (c). The white squares of size LD×LD correspond to the subdomains 	m. The right bottom image in (c) is
obtained after relaxation at T = 0.
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FIG. 4. (a) shows the minimal value of the average magnetization Nm as a function of time for 4 of 10 LLG simulations giving rise to CD
nucleation within a time window of 104. The times at which Nm drops below the threshold value of 0.3 are t1 = 2.93, t2 = 4.51, t3 = 5.40,
and t4 = 8.64. (b) shows the final states at t = 104 for each of four independent LLG simulations, and (c) shows the same states after cooling
at T = 0.

the LLG simulation step. The event of soliton nucleation is
signaled by a drop in Nm below an empirically estimated
threshold value and is then confirmed by abrupt cooling [see
the corresponding images in Fig. 3(c)]. The expected position
of the soliton is given by the coordinates of the 	m, as de-
picted in Fig. 3(b). The CD nucleation is well reproduced in
MC simulations [18].

To estimate the average time required for CD nucleation we
performed 10 independent LLG simulations for a time win-
dow of t = 104 (106 LLG iterations) at identical conditions,
T = 0.18Jk−1

B , and ϑ = 0.4 rad. In 4 of 10 simulations, we
observe a drop in Nm below the threshold value and nucleation
of the CDs. The Nm(t ) dependences for these four successful
runs are presented in Fig. 4(a) together with snapshots of
the system at the final stage of the simulations at t = 104

[Fig. 4(b)] and after the relaxation [Fig. 4(c)]. The six LLG
simulations that did not show CD nucleation within that time
window are not presented. The average time for CD nucle-
ation can be estimated as 〈t〉 = ν

∑
ti = 8.59 × 103, where

ν = 4/10 is the number of successful nucleation events over
the total number of LLG simulations, and ti (i = 1, 2, 3, 4) are
the values of time at which Nm(t ) crosses the threshold value
[see the open circles in Fig. 4(a)]. The transition rate k = 1/〈t〉
for CD nucleation is ∼10−4.

To estimate the real-time scale at which the above process
occurs, one should take realistic values of the Heisen-
berg exchange constant and magnetic moment. For instance,
for J = 5 meV and μs = μB the whole time interval in
Fig. 3(a) corresponds to ∼3.3 ns, which represents a typi-
cal timescale at which LLG simulations can be carried out
reliably [20]. At lower temperatures, the simulation of the
nucleation process of the CD might require a time win-
dow above hundreds of nanoseconds, which is extremely
time-consuming [21].

Figure 5(a) illustrates the stability range of the CD in terms
of the absolute value of the applied magnetic field h = |h|
and the tilt angle ϑ for T = 0. The CD stability domain is
confined between the critical lines defined by the collapse

field hc(ϑ ) and by the stretching (or elliptical) instability field
hs(ϑ ): hs(ϑ ) < h < hc(ϑ ). The range of h where CD is stable
shrinks with increasing ϑ , and at ϑ � 1.1 the CD becomes
unstable. Remarkably, the critical field hs coincides with the
phase transition line between the skyrmion lattice and spin
spiral states. Therefore, the CD always represents a metastable
solution while the lowest-energy state in that range of fields is
the skyrmion lattice. Nevertheless, at moderate temperatures,
the nucleation of the CDs dominates over the nucleation of
energetically more favorable π -Sks. At elevated temperatures,
we observe the transition into the skyrmion lattice within an
accessible simulation time irrespective of the field tilt angle
(see Fig. 2 at T = 0.4).

B. Harmonic transition state theory calculations

Further understanding of thermal nucleation of the CD
states can be obtained using the harmonic transition state
theory (HTST) [22,23]. Within the HTST, the rate of transition
between states X and Y is described by Arrhenius’s law,

kX→Y = νX→Y exp

(
−�EX→Y

kBT

)
, (4)

where the energy barrier �EX→Y can be identified from the
minimum energy path (MEP) connecting X and Y as the
energy difference between the highest point along the MEP—
the first-order saddle point (SP) on the energy surface of the
system—and the minimum at X . The pre-exponential factor
νX→Y incorporating the dynamical and entropic contributions
to the transition rate is defined by the curvature of the energy
surface at the minimum and at the SP [16]. Note that HTST
assumes no barrier recrossings by the dynamical trajectories;
therefore, the HTST-predicted rates typically provide a quali-
tative picture of the transition kinetics. Precise values of the
rates can be obtained by calculating the recrossing correc-
tion [24,25], but this goes beyond the scope of the present
study.
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FIG. 5. Stability diagram of CD in terms of the magnetic field h and its tilt ϑ . For h < hs (blue region), the CD becomes unstable with
respect to stretching. For h > hc (red region), the CD collapses to FM. The red line corresponds to the intermediate values of the stability
range in terms of h; magnetic textures of CDs for some points on this curve are shown in the insets. (b) shows the energy variation along the
MEPs connecting the Sk, CD, and FM states for different parameters h, ϑ along the red line in (a). Red circles denote the energy minima
corresponding to CD; red triangles mark the saddle points between the CD and FM states. (c) shows a zoom of (b), with the zero of energy
defined at the CD state.

The MEP calculations using the geodesic nudged elas-
tic band method [26,27] show that direct nucleation of the
Sk state from the FM background is possible only for ϑ �
0.1. For larger tilts of the external field, the MEP for the
Sk nucleation and annihilation passes through an interme-
diate energy minimum corresponding to the CD state [see
Fig. 5(b)]. Therefore, the system initially prepared in the FM
state undergoes a transition to the CD state before it may reach
the Sk state, which is also observed in the spin dynamics and
Monte Carlo simulations [18]. As seen from Fig. 5(b), the
energy barrier between the FM state and CD state gradually
decreases with ϑ . This explains the enhancement in the CD
generation as the tilt of the field increases. On the other hand,
the energy of the saddle point between the CD and π -Sk states
depends weakly on the tilt angle. It is mostly defined by the
discretization of the system. Approaching the micromagnetic
regime with increasing LD, the energy barrier �EFM→Sk in-
creases [28], which makes the π -Sk nucleation less probable.

Another important aspect of the problem is that the en-
ergy of the CD is always higher than that of the π -Sk. That
makes a big difference in other magnetic systems allowing the
coexistence of topological and nontopological solitons. For
instance, in perpendicular anisotropy films, a magnetic bubble
with topological index Q = −1 may undergo the transition
into a topologically trivial state with Q = 0. In the literature,
this effect induced by the tilted external field is known as
the transition between type-I and type-II bubbles [29]. Mod-
ern high-resolution Lorentz transmission electron microscopy
provides an observation of this effect in detail (see, e.g.,
Refs. [30,31]). This type of transition in bubble domain ma-
terials has a high probability because, above a specific critical
tilt angle, the energy of a topologically trivial type-II bubble
becomes lower than the energy of a normal type-I bubble [31].
As we noted above, that is not the case for 2D chiral magnets
where the π -Sk is the lowest energy state at any tilt angle,
0 � ϑ � 1

2π . Because of that, the transition from the π -Sk to
the CD represents an unlikely event.

The CD energy minimum appears to be quite shallow
[Fig. 5(b)], suggesting a quick collapse of the CD state.
However, the HTST calculations, in agreement with the spin
dynamics simulations, predict the opposite. The rates of tran-
sitions involving the CD state (FM � CD, CD � Sk) are
characterized by very different values of the energy barrier
and pre-exponential factor, as can be seen from the Arrhenius
plots shown in Fig. 6. In particular, the pre-exponential fac-
tor νFM→CD for the FM → CD transition—the nucleation of
CDs—is much larger than that for the backward transition.
Despite the very low energy barrier for the CD → FM tran-
sition, the nucleation of CDs becomes more intensive than
their annihilation in the FM state above a certain crossover
temperature. For small tilts of the external field, the CD

FIG. 6. Rates of various magnetic transitions (as indicated in the
legend) as a function of the inverse thermal energy for various tilts ϑ

of the magnetic field. The amplitude of h corresponds to the middle
line of the CD stability range in Fig. 5(a). The gray regions mark the
temperature range with the maximal intensity of the FM → CD tran-
sition. The vertical dashed line corresponds to the Curie temperature
1/Tc. The transition rate k is provided in units of inverse unitless time
t , the same as in our LLG simulations.
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quickly transits into the Sk state. However, with increasing
ϑ the CD → Sk transition is progressively suppressed due to
the increasing energy barrier �ECD→Sk [see Fig. 5(b)]. The
temperature range where the CD nucleation dominates the
annihilation by several orders of magnitude increases with
ϑ (see the gray domain in Fig. 6). The HTST calculations
therefore provide a consistent interpretation of the thermally
induced creation of CDs observed in our spin dynamics and
MC simulations. In particular, for ϑ = 0.4 and T = 0.18Jk−1

B
(1/T = 5.56) the transition rate k for CD nucleation has the
same order of magnitude, ∼10−4, as the one we estimated
from LLG simulations.

IV. CONCLUSIONS

In conclusion, we proposed a protocol for the creation of
CDs by means of thermal fluctuations in a 2D chiral magnet

under a tilted magnetic field. The protocol takes advantage of
the entropic stabilization and relatively low energy barrier for
the nucleation of a topologically trivial magnetic soliton. By
varying the temperature and the tilt of the applied field, CDs
and Sks can be generated selectively in a single system. Coex-
isting CDs and Sks can further be used as building blocks for
creating more complex magnetic solitons in chiral systems.
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